专访季虎:如何突破瓶颈构建高质量风控系统?
快速搜索 每日签到
[全国] 切换   

专访季虎:如何突破瓶颈构建高质量风控系统?__好猫数据中心

放大字体  缩小字体   来源:InfoQ   欢迎您访问好猫网 绿色建材网
   导语:互联网的开放性极大地促进了互联网产业的发展,也给人们的生活带来了诸多便利。然而,随之而来的高风险性-账号盗用、虚假交易、金融欺诈等-也让大家闻之色变。在当今互联网+的时代,如何构建强劲的风险控制系统,保障交易、信用、资金等的安全,是任何一个从事互联网业务公司的头等大事。种一棵树最好的时间是十年前,其次是现在。
 
  本文据InfoQ记者对苏宁IT总部安全研发技术总监季虎专访稿整理而成,文中分享互联网安全架构的个中精要以及苏宁安全团队在应对“11.11”等大规模活动时的努力。
 
  受访嘉宾介绍
 
  季虎    苏宁IT总部安全研发技术总监,主导构建了苏宁电商和金融的风控技术体系。在此之前,季虎曾任阿里集团安全部高级技术专家,参与了AE、金融和集团的风控系统建设,并致力推进风控自动化和大数据风控实践。其将在ArchSummit北京2015全球架构师峰会中分享《简单的不像技术活——风险检测中的时间窗口计算》:
 
  互联网+大数据时代,安全领域也越来越多的引入实时的风险识别技术,风险特征(值)计算是实时性和海量数据下的扩展性是很多风险识别系统的难点。业务安全领域,已经在这点上做了很多年的尝试和研究,这次分享从风险检测的过程分析、时间窗口统计的需求场景和各种实现等角度切入,介绍多种场景的风险特征(值)计算以及尝试性解决通用问题的框架,让参会人员了解时间窗口统计的多种技术方案和技巧、如何快速构建业务风控系统等。
 
  以下为专访文字稿整理
 
  InfoQ:季虎你好,请给我们介绍一下业界有哪些常见的风险行为及识别技术吧。
 
  季虎:在电商这一块,常见的风险行为包括垃圾账号注册、账号盗用、虚假交易、盗卡、广告的点击欺诈,信用炒作、DDOS攻击等等,这些是行为方面的风险。我们用到的识别技术有基于用户行为,作特征分析,辅助以大数据模型,构建用户画像;有利用统计模型和规则引擎作事中控制的;甚至还会对用户做主动探测。
 
  在苏宁,风控还包括了内容合规,比如色情,暴力等,也包括版权方面的事情,需要确保开放平台商户不能销售违反国家法律法规的商品,也有用户会发表违禁的评价等等。这里面用到的技术会有自然语言识别,图像识别,这些都依赖机器学习的技术; 此外,不同的行业也会有些特有的风险类型,如游戏,会遇到挂机的问题,P2P会有征信方面的需求,也各有不同的识别方法。
 
  InfoQ:风控的技术门槛在哪?业界是否有一些开源系统可以使用?
 
  季虎:风控最大的难点在于它跟具体的业务模式息息相关,很难有一个通用的方法。就以黄牛抢购爆款来说,仅抢购的业务形态就有很多,比如秒杀,预约等等,多样性对系统的架构是一个挑战;另一个难点(对电商),事中的风险识别是用户体验最好的,这就在性能上有很高的要求。以苏宁为例,下单过程中的风控识别的时间只留了50ms,这对性能有很高的挑战。
 
  如果是从头搭建一个新的风控系统,初期可以选择开源的规则引擎(drools等)做二次开发,后期按照实际情况再作调整。
 
  InfoQ:通常在业务场景中风控系统采用什么样的指标进行评估,如何评价一个风控系统的优劣?
 
  季虎:风控系统的评估,跟大多数的后端系统评估没太多差别,具体包括:灵活性,体现在一个新业务上线,一个新规则的变更,一个新模型的调整,要多久,投入多少人力;性能,是不是满足业务需要;易用性,风控系统跟业务结合紧密,能不能支撑业务需求的变更;还有一个重要的指标-效果,不同的业务形态,评估指标不同,可能是资损,可能是坏账率等,通过数据来说话。
 
  InfoQ:风控计算会不会带来很大的额外计算压力?在苏宁,我们采用什么样的技术手段来降低风控计算对业务的影响?
 
  季虎:这个必须会!风控系统内部称这为指标计算。压力主要在两方面,一个是CPU(GPU),一个是内存;具体的手段有不少,在马上召开的ArchSummit大会上我会分享一些具体的例子, 到时候大家可以一听。
 
  大致的思路有两个方向:一是预先处理,另一个就是保证计算尽量在内存中进行,根据计算的类型,把计算拆分成多个阶段,以均值为例,M(n)=((n-1)×M(n-1)+M(n))/n,这样计算形式的转换,把求均值变成可以累加计算,一部分预先处理好(可以离线处理),这样风控系统中的计算量就尽可能的减少。不能拆分的计算类型,就尽可能把数据预先加载到内存中,我们曾经在一个信用卡盗卡的模型中使用过单机250G以上内存容量的服务器。另外还有一个小技巧,根据实际的模型设计,可以考虑降低计算精度,一些特殊的数据结构可以做到计算精度降低1个点,需要的计算量降低10,甚至更多。这是些简单逻辑运算,更复杂的,如矩阵运算,我们采用高性能GPU代替通用CPU,图像识别是典型场景。
 
  上面说的是提高计算能力的方法,此外,还需要考虑把指标计算的部分独立出来做成微服务。这样既可以降低与规则引擎系统和模型的耦合性,也能更好的在系统之间共享风险指标。
 
  InfoQ:对于初创公司来说,如果公司需要构建自己风控系统,有哪些因素需要特别考虑?
 
  季虎:优先组建业务风控团队,优先组建业务风控团队,优先组建业务风控团队,重要的事说三遍。
 
  回到系统本身,有一些个人体会可以分享下:
 
  1 初期就要考虑的数据沉淀和再利用。风险判断的准确性要么看规则的合理性,要么看模型的准确性,这两个都需要数据支撑进行评价和改良。
 
  2 系统要提供效果评估评价的功能。他的点只关系到系统能不能做好,这个关系到风控业务能不能做好。
 
  3 不要过度追求规则和模型的灵活性,适当降低架构设计的目标设定,灵活性是个无底洞。
 
  4 风控系统只是辅助决策系统,不要串联到业务流程中,要旁路。
 
  InfoQ:从苏宁的风控系统实践的经验来说,风控系统架构的瓶颈会在什么地方?
 
  季虎:主要可能有三个方面:
 
  1 第一个会遇到的瓶颈,都是灵活性。实际上,我参与过的风控系统建设,都会经常性做重构,基本上一年一版。我们做得好的地方在于,设计的时候采用了微服务化的思路,重构的时候不需要全盘推到重来。最近一次重构,重构了模型部分--因为spark等技术的发展,性能上已经满足实时需求,我们就仅仅重构了这个部分。其他的如风险指标的计算,处罚等服务,可以维持原样。
 
  2 活动期间的性能问题,一般系统的性能冗余留一倍就差不多了,但是风控不行,我们活动期间的容量需求是平时的几十倍左右,方便的scale out是必须的,这点苏宁的私有云技术提供了很好的技术支撑。在11.11等活动期间,我们能做到一键扩容,动态资源回收。PS:真不是替苏宁云打广告,私有云方面,整个业界苏宁应该是走在前列的。
 
  3 离线模型的支持,要保证线上线下数据一致性,这在架构设计上有一定难度,netflix定义的online,nearline和offline的三线协作模型是很好的参考。
 
  InfoQ:随着业务的飞速发展,你认为风控系统的下一步发展方向将是?
 
  季虎:从两个维度说说我的认识,从风控系统本身来看,自动化应该是一个很重要的需求,自动训练,学习,评估,我们也正在作深度学习方面的探索,特别是无监督学习的尝试;在整个行业的高度看,就要借用我前同事的一个词语“联防联控”,通过云的方式,交付风控的技术能力,并达到整个行业的能力共享。
 
 
       整理:好猫网 门窗幕墙材料网



好猫网
微信服务号
好猫网
手机客户端APP
提示:本文来源于网络,如有侵版,请及时联系,我们将在24小时内删除。
 
  浏览次数:2210

 
0条 [查看全部]  相关评论

 
推荐图文
推荐数据中心
点击排行